PART A: MULTIPLE CHOICE (10 MARKS)

1 d 2 b 3 d 4 b 5 c 6 c 7 d 8 a 9 a 10

PART B: MATCH (5 MARKS)

1 E | E | H | D | G

PART C: SHORT ANSWER (25 MARKS)

Answer questions 1 to 3 in the space provided. Answer questions 4 and 5 on the back of this sheet.

- (6) 1. When a bar magnet is plunged into a coil of 300 turns at a steady speed of 15 cm/s, the maximum induced potential difference is 25 mV.
 - (a) How fast should the bar magnet be inserted into the coil to produce a maximum induced potential difference of 30 mV?

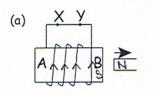
$$V \propto -V$$

$$\frac{V_1 - V_1}{V_2 - V_2}$$

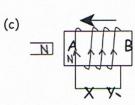
$$\frac{25mV}{30mV} = \frac{15cmls}{V_2}$$

$$\frac{V_2}{V_3} = \frac{18cmls}{18cmls}$$

(b) If the bar magnet is being inserted at a steady speed of 15 cm/s, how many turns should be present in the coil to provide a maximum induced potential difference of 45 mV?


$$V \propto N$$

$$\frac{V_1 = N_1}{V_2 \quad N_2}$$


$$\frac{25mV}{45mV} = \frac{300}{N_2}$$

$$\frac{N_2 = 540 \text{ turns}}{N_2}$$

2. For each of the inducing actions predict whether the induced current will flow from X through the helix to Y, or from Y through the helix to X.

(b) X Y A A B S

Current: _

X-Y

Current: _

X-Y

Current:

X-Y

Current:

{3} 3. Complete the following chart (< or >) for a <u>step-down transformer</u>.

Primary Coil	< or >	Secondary Coil
N _P	>	N _s
V _P	>	V _s
Ip	<	Is

- 4. A transformer consists of a primary coil of 200 turns and a secondary coil of 2000 turns. The secondary potential difference and current are 30.0 V and 0.700 A.
- (3) (a) What is the primary potential difference?
- {3} (b) What is the primary current?
- {1} (c) What kind of transformer is it?

 $\{5\}$ 5. Electric energy is generated at a potential difference of 20 kV. It is supplied to a nearby town that requires power of 1.00 MW. The transmission line along which it flows has a resistance of 0.50 $\Omega.$ What is the energy loss (in kW) due to heat in the line if the energy is transmitted at 500 kV?

4.)
$$N_p = 200 \text{ turns}$$

 $N_s = 2000 \text{ turns}$
 $V_s = 30.0V$
 $I_s = 0.700 \text{ A}$

a)
$$N_p = V_p$$

 $N_s V_s$
 $\frac{200}{2000} = V_p$
 $\frac{30.00}{30.00}$

b)
$$Np = Is$$
 $Ns Ip$
 $200 = 0.700$
 $2000 Ip$
 $Ip = 7.00 A$

; step-up transfamer

5.)
$$P = 1.00 \text{ MW}$$

 $= 1.00 \times 10^6 \text{ W}$
 $R = 0.50 \Omega$
 $V_{\text{Transmit}} = 500 \text{ kV}$
 $= 500 \times 10^3 \text{ V}$

current in line

$$I = P = 1.00 \times 10^{6}$$
 $V = 500 \times 10^{3}$
 $I = 2.0 \text{ A}$

power loss

$$P_{loss} = I^2 R$$
 / = $(2.0)^2 (0.50)$