LIGHT & GEOMETRIC OPTICS Snell's Law (P.441-442) | Snell's Law | | | |--|--|-------------------| | However, this formula wa
that it only worked wi
travelling from air (or a
another substance – it did
light travelled from a sub.
With further study a more
was discovered. | hen light was
vacuum) into
not work when
stance into air. | normal θ_t | | RECALL! | | n_2 | | The angles of the incident | t and refracted | \ | | light rays are always mea | sured from the | θ_2 | | normal. | | σ ₂ | | | | | | | | * | | | | | | May 19, 2013 | 2DPHYS - Snell's Law | 2 | | Snell's Law | | |---|-----------------------------------| | Snell's law is a formula that uses values for the index of refraction to calculate the new angle that a ray will take as a beam of light strikes the interface between two media. If you call the indices of refraction of the two media n_1 and n_2 and call the angles of incidence and the angle of refraction θ_1 and θ_2 then the formula for Snell's law is: | normal θ_1 interface n_1 | | $n_1 \sin \theta_1 = n_2 \sin \theta_2$ NOTE! θ is a Greek symbol used in science and math to represent an unknown angle. | θ_2 | 2DPHYS - Snell's Law May 19, 2013 | ✓ Check Yo | our Learning | | |---|---|----------------| | beam is passed fi
The angle of incid | a block of cubic zirconia is placed in water. A rom the water ($n=1.33$) through the cubic zir ence is 50° , and the angle of refraction is 27° . fraction of cubic zirconia? (Be sure to use these questions.) | conia.
What | | $n_{cubic} = n_2 = 2.24$ | | | | | | | | | | | | | | | | May 19, 2013 | 2DPHYS - Snell's Law | 5 | | ✓ Check Your Learning | | | | |--|---|--|--| | 2. When light passes from air (n = 1.00) into water (n = 1.33) at an angle of incidence of 60° , what is the angle of refraction? | | | | | $R = \theta_2 = 41^{\circ}$ | | | | | | _ | | | | | _ | | | | | _ | | | | May 19, 2013 2DPHYS - Snell's Law 6 | _ | | | | | | | | | | | | | | ✓ Check Your Learning | | | | | TEXTBOOK P.441 Q.1-3 P.442 Q.1-3 | _ | | | | | | | | NOTE! May 19, 2013 2DPHYS - Snell's Law