











L6(9.1) - The Intersection of Lines in R³, K²

A linear system of two (or more) equations is said to be CONSISTENT if it has at least one solution, otherwise it is INCONSISTENT.

A linear system may have:

- a) No solutions: the lines do not intersect
 - the lines are parallel & distinct (in same plane)the lines may be skew: they are not parallel,

but they do not intersect because they lie in

different planes

- b) 1 Unique solution: the lines cross at one point
 - the angle between two lines is calculated

using the dot product between two direction

vectors

c) Infinite solutions: - the lines are coincident

Ex1: Solve the following system and describe the geometric relationship between the lines.

a)
$$x = 6 - 18s$$
, $y = 12 + 3s$
 $x = 8 - 6t$, $y = 4 + 9t$

$$S = \frac{5}{24}$$

$$3t - 9(\frac{5}{24}) - 1 = 0$$

$$3t - \frac{45}{24} - 1 = 0$$

$$x = 8 - 6t$$

$$=8-6(\frac{2^3}{2^4})$$

$$= 8 - \frac{23}{4}$$

$$=\frac{9}{4}$$

$$=4+7\left(\frac{23}{24}\right)$$

$$=\frac{101}{8}$$

. The point of int 治 (年,回).

The lines cross at 1 point (1 unique solution)

The System is consistent.

b)
$$2x + 5y + 15 = 0$$
 $3x - 4y + 11 = 0$
 $y = mx + b$
 $x = (A,B)$
 $y = (A,B)$

c)
$$\frac{x+4}{3} = \frac{y-12}{4} = \frac{z-3}{6}$$
 $\Rightarrow \vec{r_1} = (-4,12,3) + t(3,4,6)$, then $\frac{x}{3} = \frac{y-10}{2/3} = z+5$
 $1/2 = \frac{y-10}{2/3} = z+5$
 $\Rightarrow \vec{r_2} = (0,10,-5) + s(\frac{1}{2},\frac{2}{3},1)$, sells we can see that these lines are either a parallel or $\vec{m_1} = 6\vec{m_2}$. Coincided $(3,4,6) = 6(\frac{1}{2},\frac{2}{3},1)$

So use point $(0,10,-5)$ in $\vec{r_1}$ to see if consistent $\frac{x-comp}{0=-4+2st}$ $\frac{y-comp}{0=12+4t}$ $\frac{z-comp}{skipped-3}$ no need to check $t=\frac{4}{3}$ $t=-\frac{2}{4}=-\frac{1}{2}$. Not consistent $t=\frac{4}{3}$ $t=\frac$

Assigned Work:

p.497-498 #8, 9, 11, 12