Assessment Quiz 5 Unit 7

Find the Cartesian Equation of the plane defined by the points L(1,3,6)

M(-3,5,8) and N(-4,6,-6).

$$\vec{N} = (-4, 7, 2) \quad \vec{N} = (-5, 3, -12)$$

$$\vec{N} = \vec{L} \vec{M} \times \vec{L} \vec{N} \qquad \text{Sub } \vec{m} \implies (1, 3, 6)$$

$$= \begin{vmatrix} i & j & k \\ -4 & 7 & 7 \\ -5 & 3 & -12 \end{vmatrix} \qquad \text{for } \vec{F} : \vec{n} \cdot \vec{D} : \\
= (-30, -58, -2) \qquad D=216$$

... The Cartesius Eqn of 97

is
$$-30x - 58y - 2z + 216 = 0$$

$$-02 - 02 - 15x + 29y + z - 108 = 0$$

L7(9.1) - Intersections of a Line and a Plane

There are three possibilities:

1 - No solution The line and the plane are paralleho

point of intersection.

2 - One solution The line cuts the plane, one point of

intersection.

3 - Infinite solutions The line is in the plane, **infinite points**

of intersection described by the

equation of the line.

Ex1: Find the intersection of the line and the plane

$$r = (4,6,-2) + t(-1,2,1) \rightarrow \vec{n} = (-1,2,1)$$

$$T: 2x - y + 6z + 10 = 0 \rightarrow \vec{n} = (2,-1,6)$$

Check possibilities using dot product:

$$\vec{N}_{H} \cdot \vec{m}_{L} = (2_{1}-1,6) \cdot (-1,2_{1})$$

$$= -2-2+6$$

$$= 2$$

$$\Rightarrow \therefore \text{ not equal to zero}$$

Step 1: get parametric form of L Step 2: Sub x, y, z :nto

$$2(4-t)-(6+2t)+6(-2+t)+10=0$$

$$2t = 0$$

... the point of intersection is (4,6,-2).

Draw the direction vector of the line and the normal of the plane. Can

we make any conclusions?

Ex2: Find the intersection of the line and the plane

$$x = 5 + t$$
 and π : $2x + 3y - 4z - 7 = 0$
 $y = 4 + 2t$
 $z = 7 + 2t$

$$2(5+t)+3(4+2t)-4(7+2t)-7=0$$

$$10+2t+12+6t-28-8t-7=0$$

$$0t=13$$

There are <u>no solutions</u> for t ... No points of intersection of the line is parallel to the

what if

ot = 0

LER: Infinite solutions

defind by the line

Assigned Work:

p.496-498 # 3, 4, 5, 6, 7, 13

Review

Read Ch 8 Summary p.479

Review p.480-483 (34 questions)

Chapter 9.1 (Intersections of L & L/ L & Plane)